
Interactively Augmenting Stack Overflow with API Usage
Patterns Mined from GitHub

Anastasia Reinhardt† Tianyi Zhang∗ Miryung Kim∗
†George Fox University, Newberg, OR, USA ∗University of California, Los Angeles, USA

ABSTRACT
Programmers often consult Q&A websites like Stack Overflow
to learn new APIs. However, such online code examples are
not always complete or reliable in terms of API usage. To
assess and augment Stack Overflow examples, we present
an interactive approach, Soap, that contrasts code examples
with API usage patterns learned from GitHub and alerts
users about the potential API usage violations. With the
assistance of Soap, programmers do not need to cross-check
multiple examples for proper API usage reference, and can
also build confidence by learning how many other GitHub
developers also follow the same practice.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environme-
nts—Integrated Environments

1. INTRODUCTION
This paper’s main contribution is to describe the features

of Soap from a user’s perspective. This user interface, in
the form of a Chrome extension, was developed to make a
previous project, Maple [9], accessible for programmers.

Programmers often search for online code examples to
learn new APIs. A case study at Google shows that develop-
ers issue an average of 12 code search queries per weekday [6].
Stack Overflow (SO) is a popular Q&A website that pro-
grammers often consult. As of July 2017, Stack Overflow
has accumulated more than 22 million answers, many of
which contain code examples to demonstrate the solution for
a particular programming question. However, SO examples
are not always complete or reliable, which can be mislead-
ing and potentially dangerous when programmers follow the
same example to complete a client program. Our previous
study shows that over 50% of 31,801 SO posts contain API
misuse that could produce symptoms of program crashes and
resource leaks if reused in a target system [9]. Neglecting
to close an input stream, for example, could lead to data
leakage or generally unreliable code.

To assess online code examples, this paper presents Soap,
an interactive approach that augments Stack Overflow with
code idioms learned from GitHub and alerts programmers
about potential violations in a code example. Soap leverages
a scalable API usage mining technique from Maple [9] to
learn three types of API-related idioms—temporal ordering,
guard conditions, and exception handling of API calls—from
over 7 million GitHub projects. Our insight is that commonly
practiced idioms in massive code corpora may represent a

Figure 1: An overview of Soap’s architecture

desirable pattern that a programmer can use to trust and
enhance code examples on Stack Overflow.

Given an SO example, Soap first extracts the sequence of
API calls with corresponding control constructs and guard
conditions. Soap then contrasts the sequence with commonly
practiced idioms in GitHub and highlights code regions that
violate the idioms. To help users better understand the vio-
lations, Soap further generates descriptive warning messages
and also contextualizes a violated idiom by synthesizing a
fixed example. Mining code idioms to detect API usage
violations often suffers from reporting false alarms, since
mined idioms may not be inclusive and fit all usage scenarios
of an API [3]. To mitigate this issue, Soap allows users to
upvote or downvote a violation based on its applicability and
usefulness to an SO example. Soap filters a code idiom when
multiple users flag it as unhelpful to assess an example. To
help developers build confidence on a code idiom, Soap shows
how many GitHub developers also follow the idiom as well
as how many other users like or dislike this idiom.

A user of Soap would benefit from the addition of examples
from compiled GitHub resources to the code examples she
encounters on Stack Overflow. This will not only combat
programming issues stemming from the use of incomplete
or unreliable SO code examples, but will also be an aid for
users learning a new API. By enhancing examples already
found in Stack Overflow, a user can trust that she will learn
common and reliable usage patterns for a given API.



In order to give programmers access to Soap, the front-end
of Soap is implemented as a Chrome extension that users
can easily download and install.

2. MOTIVATING EXAMPLES AND TOOL
FEATURES

Consider Alice, a software developer who needs to convert
Java objects to their JSON representations using Google’s
Gson library2, which she is unfamiliar with. Alice finds a
Stack Overflow post that demonstrates how to get the string
value of a json element, as shown in Figure 2. However, this
example does not use the JsonElement API properly.

Detecting and Highlighting Potential API Misuse.
The pattern mining technique learns two JsonElement.getAs-

String patterns that are commonly practiced by GitHub
developers: (1) a check to make sure that the JsonEle-

ment object is of the type JsonPrimitive by using JsonEle-

ment.isJsonPrimitive before calling getAsString, and (2)
a check to make sure that the JsonElement object is not null
before calling getAsString.

The extension highlights the potential API misuse in the
code snippet, as seen in Figure 2. Alice is interested in
learning more about the API and what specifically the code
snippet did not include, so she clicks on the highlighted text.

Stack Overflow Popup View. Clicking on the high-
lighted text reveals a popup, as seen in Figure 2a and 2b.
The popup is populated with information about any required
patterns in Soap’s database this particular API call does
not adhere to. Alice notices that there are two pages of the
popup, indicating two different usage patterns that this call
does not follow, as shown in Figure 3a and Figure 3b.

Alice inspects the first page (Figure 3a) and sees a warning
message, automatically generated by Soap for that particular
API misuse. She learns that she should check whether the
JsonElement object is null before calling getAsString. She
notices that 113 other GitHub code examples use this pattern,
which gives her a quantitative measurement of how prevalent
this pattern is in real-world projects. Below this is a code
example following the required pattern, generated by Soap

based on the context of the SO example.
Alice then inspects the second page (Figure 3b), and finds

that it suggests to check whether the JsonElement object is
primitive before calling getAsString to avoid a ClassCas-

tException. She notices that this pattern has less than half
the support of the previous pattern.

Curious to see the first pattern in context, Alice returns
to the first page of the popup and clicks on the first link
provided to her under “See this in a GitHub example.”

GitHub Example View. When Alice clicks on one of
the GitHub links, the file opens in a new tab and the view
scrolls to where the API is called in the file, and the method in
which this occurs is highlighted so Alice can easily find it, as
seen in Figure 4. The addition of a compilable code example
that demonstrates the pattern in context can aid Alice in
understanding how to use the pattern if it is unfamiliar to
her. In this case, Alice finds herself redirected to the method
in a GitHub project seen in Figure 4.

Returning to the popup in Stack Overflow, Alice clicks
on the second link provided for the second page to compare

1https://stackoverflow.com/questions/34120882/gson-
jsonelement-getasstring-vs-jsonelement-tostring
2https://github.com/google/gson/blob/master/UserGuide.md

usage patterns in context. This link opens up to the GitHub
method seen in Figure 4b. She notices that the example uses
a null check in conjunction with the primitive check, which
makes sense to her after seeing that both were missing from
the Stack Overflow code snippet. However, she notes that
the more commonly-used pattern only uses a null check.

After seeing these two examples, Alice can infer that a
null check is more necessary and is more common than the
primitive check, based on the GitHub examples she has
seen as well as the GitHub support indicated by the popup
message. She upvotes the null check’s pattern by clicking on
the up-arrow on its page (see Figure 3b) to send the server
her feedback on the patterns it gave her.

3. IMPLEMENTATION
This section describes the implementation details of Soap.

The front-end is implemented as a Chrome extension and
the back-end is set up in an Apache server. Soap consists of
five components: (1) Stack Overflow code snippet extraction,
(2) API misuse detection, (3) popup generation, (4) GitHub
example alteration, and (5) a user feedback interface.

Code Snippet Extraction. When a user loads a Stack
Overflow webpage, the Chrome extension extracts code snip-
pets within <code> tags in answer posts, and sends them in
a JSON message to the server, as seen in Figure 1.

API Misuse Detection. When the server receives a
message from the plug-in, it parses the snippets into API
call sequences, abstracting away irrelevant statements and
syntactic details. An API call sequence consists of relevant
control constructs and API calls, where the API calls are
annotated with the number of arguments as well as any guard
conditions associated with it.

Pattern Mining. Once the code snippets are parsed, Soap

searches its pattern database for the API calls present in each
API call sequence. Soap’s pattern database is bootstrapped
with mined patterns of 30 well-studied Java and Android
APIs. When Soap encounters a new API that does not
exist in its database, it automatically issues another mining
request and expands the database with the new patterns
it finds. Specifically, Soap utilizes a distributed software
mining infrastructure, Boa,5 to traverse the abstract syntax
trees (ASTs) of 7 million Java projects, collected September
2015 from GitHub. For every AST method, Soap checks if
it is from the API of interest. If it is, Soap translates the
code snippet into a structured call sequence. From these call
sequences, Soap finds a common subsequence which is the
required pattern for that API method, and this is added to
the database.

When Soap receives the required and alternative patterns
associated with the specified API calls, it checks whether the
code snippet’s call sequence satisfies one of the alternative
patterns and all required patterns. A code snippet’s call
sequence satisfies a pattern if it is subsumed by it.

Additionally, while this checking process is occurring, the
guard conditions in the code snippets are generalized before
checking their logical implications using the SMT solver Z3.
Z3 is used to check the logical equivalence between two guard
conditions so that Soap can merge logically-similar clusters
of guard conditions.

4http://tinyurl.com/JsonObjectDriver
4http://tinyurl.com/SpoutcraftConfig
5http://boa.cs.iastate.edu/



Figure 2: A code snippet that does not properly check JsonElement.getAsString.1

(a) A page describing a way to avoid a NullPointerException by
checking whether the JsonElement object is null.

(b) A page describing a way to avoid a ClassCastException by
checking whether the JsonElement object is a primitive.

Figure 3: The two pages of a popup generated on JsonElement.getAsString.

If Soap finds that an API call sequence does not satisfy the
necessary patterns, it generates violations for each potential
API misuse and returns them to the plug-in.

Popup Generation. Using the data from the server’s
JSON message, the plug-in searches the identified code snip-
pet for the API call in question, highlights it, and generates
a Bootstrap popover on it, as seen in Figure 3. The popover
is populated with a violation message describing the pattern
being violated and including the GitHub support for the
required pattern, in terms of number of supporting projects
as well as three links to relevant GitHub pages using that
pattern correctly. The plug-in generates one popover for
each API call, and generates pages of the popover for each
different pattern being violated by that call. The provided
example of the pattern is currently hard-coded.

GitHub Example Alteration. When the user clicks on
a provided GitHub example in the popup, the plug-in’s main
script writes the name of the method call associated with

that link to a shared storage space for the Chrome extension,
using the chrome.storage API. The script highlights the
entire method and scrolls the view down so the user is easily
able to find it, as seen in Figure 4.

User Feedback. Users are able to give feedback on the
patterns the popup shows them by voting ”up” or ”down”
on them. When a vote is registered, the plug-in sends the
server a message with the pattern’s specific ID and a vote
of +1 or -1, which the server uses to update the database.
This will be used in the future to rank patterns that are sent
to the plug-in, and learn which ones users find helpful or
unhelpful.

4. RELATED WORK
Quality Assessment of Online Code Examples. The

quality of online code examples has been investigated from
various perspectives, with the conclusion that such examples



(a) The second GitHub example for Figure 3a in the context of its
GitHub file.3

(b) The first GitHub example for Figure 3b.4

Figure 4: The GitHub examples redirected to from the links provided in the popup, highlighted by the Chrome extension.

are largely unreliable in terms of resolvable, parsable, or
compilable code. Dagenais and Robillard [1] find that 89%
of API names in online-forum code snippets are ambiguous
and not easily resolved due to their incompleteness. Sub-
ramanian et al. [7] observe that 66% of a corpus of 39,000
SO snippets are free-standing statements, lacking class or
method declarations. Similarly, Yang et al. [8] find that out
of 91,000 Java SO code snippets, only 3.89% are parsable
and 1% are compilable. Zhou et al. [10] observe that 86 of
200 accepted SO posts use deprecated APIs but only 3 of
them are reported by other users. We previously performed
a study [9] considering the implications of following such
code examples verbatim and how this may encourage poten-
tial API misuse and lead to unexpected behavior in client
programs.

API Usage Mining. Soap’s API usage mining is de-
scribed in further detail in our previous technical study. A
large body of literature in API usage mining currently ex-
ists which uses a variety of techniques. However, to our
knowledge these existing pattern mining techniques do not
mine from massive code corpora with millions of projects.
Gruska et al. [2] mines from the largest code corpus we are
aware of, which comprises 6,000 Linux projects. Our pattern
mining also uses a prediate mining technique to mine API
call guard conditions in addition to API call ordering. To our
knowledge, Ramanathan et al. [5] and Nguyen et al. [4] are
the only other predicate mining techniques, and unlike these
techniques we formalize the predicate equivalence problem as
a satisfiability problem and leverage an SMT solver to group
logically equivalent predicates during guard mining [9].

Codota. The Codota Code Browsing Assistant for Chrome6

analyzes Java and Android code snippets in web pages and
enhances them with IDE-like features. A user may click
on underlined code to view API documentation, references,
and API-level compatibility issues, and may also save code
snippets to view later in a CodeBox supported by Codota.
Soap, which draws inspiration from this tool’s user interface,
instead focuses specifically on potential API misuse and does
so by inferring common usage patterns from GitHub code

6https://www.codota.com/code-browsing-assistant

projects, as opposed to using API documentation. Soap also
uses code examples derived from required patterns as well
as code examples in their original GitHub context to demon-
strate a given pattern to a user as opposed to describing it
with natural language or API documentation.

5. SUMMARY
Soap is an interactive approach to enriching code examples

on Q&A sites like Stack Overflow that incorporates API usage
mining and user feedback in its UI design. Programmers
often use sites like Stack Overflow to understand API usage,
but the reliability of the code examples on these forums
is under question. This user interface was designed with
the intention of reducing the need to cross-check sites for
API usage questions. It takes advantage of the benefits
of using easy-to-understand code examples as opposed to
API documentation for learning API usage by enhancing
the examples already present in Stack Overflow while also
providing other, more reliable ones.

For future work, we would like to qualify the benefits of
Soap with a user study, as well as generate code examples
for the popups based on the abstract patterns we have in
the database.

6. REFERENCES
[1] B. Dagenais and M. P. Robillard. Recovering traceability

links between an api and its learning resources. In 2012
34th International Conference on Software Engineering
(ICSE), pages 47–57. IEEE, 2012.

[2] N. Gruska, A. Wasylkowski, and A. Zeller. Learning
from 6,000 projects: lightweight cross-project anomaly
detection. In Proceedings of the 19th international sym-
posium on Software testing and analysis, pages 119–130.
ACM, 2010.

[3] B. Liang, P. Bian, Y. Zhang, W. Shi, W. You, and
Y. Cai. Antminer: mining more bugs by reducing noise
interference. In Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on, pages
333–344. IEEE, 2016.



[4] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan.
Mining preconditions of APIs in large-scale code corpus.
In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 166–177. ACM, 2014.

[5] M. K. Ramanathan, A. Grama, and S. Jagannathan.
Static specification inference using predicate mining.
In ACM SIGPLAN Notices, volume 42, pages 123–134.
ACM, 2007.

[6] C. Sadowski, K. T. Stolee, and S. Elbaum. How devel-
opers search for code: a case study. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 191–201. ACM, 2015.

[7] S. Subramanian and R. Holmes. Making sense of online
code snippets. In Proceedings of the 10th Working Con-

ference on Mining Software Repositories, pages 85–88.
IEEE Press, 2013.

[8] D. Yang, A. Hussain, and C. V. Lopes. From query to
usable code: an analysis of Stack Overflow code snippets.
In Proceedings of the 13th International Workshop on
Mining Software Repositories, pages 391–402. ACM,
2016.

[9] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and
M. Kim. Are code examples on an online Q&A forum
reliable? A study of API Misuse on Stack Overflow. In
Submission for ICSE, 2017.

[10] J. Zhou and R. J. Walker. API deprecation: a retrospec-
tive analysis and detection method for code examples
on the web. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 266–277. ACM, 2016.


